Arabidopsis HOOKLESS1 Regulates Responses to Pathogens and Abscisic Acid through Interaction with MED18 and Acetylation of WRKY33 and ABI5 Chromatin.
نویسندگان
چکیده
Arabidopsis thaliana HOOKLESS1 (HLS1) encodes a putative histone acetyltransferase with known functions in seedling growth. Here, we show that HLS1 regulates plant responses to pathogens and abscisic acid (ABA) through histone acetylation at chromatin of target loci. The hls1 mutants show impaired responses to bacterial and fungal infection, accelerated senescence, and impaired responses to ABA. HLS1 modulates the expression of WRKY33 and ABA INSENSITIVE5 (ABI5), known regulators of pathogen and ABA responses, respectively, through direct association with these loci. Histone 3 acetylation (H3Ac), a positive mark of transcription, at WRKY33 and ABI5 requires HLS1 function. ABA treatment and pathogen infection enhance HLS1 recruitment and H3Ac at WRKY33. HLS1 associates with Mediator, a eukaryotic transcription coregulatory complex, through direct interaction with mediator subunit 18 (MED18), with which it shares multiple functions. HLS1 recruits MED18 to the WRKY33 promoter, boosting WKRY33 expression, suggesting the synergetic action of HLS1 and MED18. By contrast, MED18 recruitment to ABI5 and transcriptional activation are independent of HLS1. ABA-mediated priming of resistance to fungal infection was abrogated in hls1 and wrky33 mutants but correlated with ABA-induced HLS1 accumulation. In sum, HLS1 provides a regulatory node in pathogen and hormone response pathways through interaction with the Mediator complex and important transcription factors.
منابع مشابه
The PP6 phosphatase regulates ABI5 phosphorylation and abscisic acid signaling in Arabidopsis.
The basic Leucine zipper transcription factor ABSCISIC ACID INSENSITIVE5 (ABI5) is a key regulator of abscisic acid (ABA)-mediated seed germination and postgermination seedling growth. While a family of SUCROSE NONFERMENTING1-related protein kinase2s (SnRK2s) is responsible for ABA-induced phosphorylation and stabilization of ABI5, the phosphatase(s) responsible for dephosphorylating ABI5 is st...
متن کاملThe SWI2/SNF2 chromatin remodeling ATPase BRAHMA represses abscisic acid responses in the absence of the stress stimulus in Arabidopsis.
The survival of plants as sessile organisms depends on their ability to cope with environmental challenges. Of key importance in this regard is the phytohormone abscisic acid (ABA). ABA not only promotes seed dormancy but also triggers growth arrest in postgermination embryos that encounter water stress. This is accompanied by increased desiccation tolerance. Postgermination ABA responses in Ar...
متن کاملSumoylation of ABI5 by the Arabidopsis SUMO E3 ligase SIZ1 negatively regulates abscisic acid signaling.
SUMO (small ubiquitin-related modifier) conjugation (i.e., sumoylation) to protein substrates is a reversible posttranslational modification that regulates signaling by modulating transcription factor activity. This paper presents evidence that the SUMO E3 ligase SIZ1 negatively regulates abscisic acid (ABA) signaling, which is dependent on the bZIP transcripton factor ABI5. Loss-of-function T-...
متن کاملThe Arabidopsis mediator subunit MED25 differentially regulates jasmonate and abscisic acid signaling through interacting with the MYC2 and ABI5 transcription factors.
Transcriptional regulation plays a central role in plant hormone signaling. At the core of transcriptional regulation is the Mediator, an evolutionarily conserved, multisubunit complex that serves as a bridge between gene-specific transcription factors and the RNA polymerase machinery to regulate transcription. Here, we report the action mechanisms of the MEDIATOR25 (MED25) subunit of the Arabi...
متن کاملSOS2-LIKE PROTEIN KINASE5, an SNF1-RELATED PROTEIN KINASE3-Type Protein Kinase, Is Important for Abscisic Acid Responses in Arabidopsis through Phosphorylation of ABSCISIC ACID-INSENSITIVE5.
Abscisic acid (ABA) plays an essential role in seed germination. In this study, we demonstrate that one SNF1-related protein kinase3-type protein kinase, SOS2-like protein kinase5 (PKS5), is involved in ABA signal transduction via the phosphorylation of an interacting protein, abscisic acid-insensitive5 (ABI5). We found that pks5-3 and pks5-4, two previously identified PKS5 superactive kinase m...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Plant cell
دوره 28 7 شماره
صفحات -
تاریخ انتشار 2016